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An Unsupervised Method for Wake/Sleep Scoring

Abstract

by

JIN XING

Visual sleep scoring of Polysomnograms (PSG) by an expert is a time-consuming
process. Although a number of automatic sleep scoring methods have been proposed
in literature, most of them are based on supervised algorithms, that is, labels in their
training data assigned by an expert are required. In this thesis, we propose an
unsupervised method for wake/sleep scoring without labels a priori. Features based on
temporal and spectral analysis are extracted from a single channel of EEG. Principal
Component Analysis (PCA) is used to reduce the number of features while identifying
patterns in the data. The Gustafson—Kessel algorithm is used for clustering analysis
and sleep scoring is done by retrieving one characteristic feature of wake: the alpha
rhythm. Sixteen subjects from the MIT-BIH Polysomnographic Database were tested
by this method. Compared to actual stage scoring, 14 have scoring accuracy above 75%

and the average accuracy is 79.35%.



1. INTRODUCTION

Polysomnography (PSG) is a comprehensive recording of the biophysiological
changes that occur during sleep. It consists of various electrical biosignals including
electroencephalography (EEG), electrooculography (EOG) and electromyography
(EMG). These signals are segmented into epochs of 30 seconds and assigned a sleep
stage by an expert. This procedure is called sleep scoring. However, it is a time
consuming and subjective process. Thus, the development of an automatic sleep

scoring system is desirable.

Automatic sleep scoring has been addressed by many research groups. Supervised
methods we discussed first. In [15], Hugo Sim&s et al. used R-square Pearson
correlation coefficient and Bayesian classifier; using 19 of the most discriminate
features selected from 204 features in 6-channel EEG, a 93% agreement with the
expert is obtained for 2-class (wake and sleep) detection. In [31], Zhou Peng, et al
(2011) combines Principal Component Analysis (PCA) and Support Vector Machine
(SVM) to discriminate stage W, NREM stage 2 and NREM stage 3 for each subject;
by testing 5 subjects, 87.9% accuracy is achieved on average. [13] (Salih Gunes et al,
2010) proposed a feature weighting method based on k-means clustering and
combined it with k-NN (k-nearest neighbor) and decision tree classifiers to classify
sleep EEG into six sleep stages; it achieved 82.15% success rate using k-NN classifier

for k a value of 40. Farideh Ebrahimi et al (2008) in [8], deployed wavelet packet
1



coefficients and artificial neural network and their result demonstrated that 4 sleep
stages could be automatically discriminated with an accuracy of 93.0 +4.0%. In [27]
Shing-Tai Pan et al (2012) developed a classification system based on Discrete
Hidden Markov Model (DHMM) and 85.29% overall agreement between the expert
and the results is presented. Other then supervised learning based methods, a few
unsupervised sleep scoring schemes are also proposed. In [30], Hese et al (2001)
implemented a semi-automatic method based on a modified version of k-means
algorithm. In [11], I. Gath et al (1989) suggested computerized scoring of sleep EEG
into various stages by fuzzy clustering. However, no result is presented in these two
works. Jing Dong et al (2010) in [7], applied Empirical Model Decomposition (EMD)
and k-means algorithm to stage wakefulness and three NREM sleep stages; only 60 +
5.0% agreement with the expert was attained. All of the high performances reported
for their methods are based on supervised learning, that is, training data labeled by an
expert is required. Therefore, it’s worthwhile to investigate the design of an
unsupervised sleep scoring method without any label a priori. Such a system makes it
possible to monitor a patient without requiring a sleep scoring of the PSG by an
expert. Also, it would increase the time efficiency and reproducibility of sleep scoring.
To this end, this thesis proposes an unsupervised wake/sleep scoring method, as the
first step toward developing a complete sleep stages unsupervised scoring system. Our
method only requires a single EEG channel. The similar patterns in EEG presented

between wake and NREM (non-rapid eye movement) stage 1 or REM (rapid eye

2



movement) is what makes automated wake/sleep scoring challenging. Although other
biosignals, such as EOG and EMG, maybe helpful, they are not used in our study. The
data used in this study is from MIT-BIH Polysomnographic Database. All the

algorithms are developed in the MATLAB environment.

The thesis is organized as follows: Chapter 2 reviews the background algorithms used
in our method; Chapter 3 gives the schematic overview of our method and discusses
each of its steps in detail; Chapter 4 presents the results; Chapter 5 contains

conclusions and future work.



2. BACKGROUND ALGORITHMS

2.1 Welch’s Method

A method to estimate the power spectrum of a signal is to find the discrete-time
Fourier transform of the signal and compute the magnitude squared of the result. This
estimate is called the periodogram. For a signal {x(n)}r']“:1 , the periodogram spectral
estimator is computed as follows:

2

P(f) =% ix(n) exp(—j2z fn) (2.1.1)

n=1

where P(f) is the estimation of the periodogram. To ensure the estimate is
asymptotically unbiased, that is, as the number of samples increases, the expected
value of the periodogram approaches the true power spectral density (PSD), the
magnitude squared of the FFT is scaled by the signal length N . The problem with
the periodogram estimate of the PSD is that its variance is large and does not decrease

as the number of samples increases.

Welch’s method is a modified periodogram, where the data segments are windowed
before computing the periodogram. In Welch’s method, signals are divided into
overlapping segments, each data segment is windowed, periodograms are calculated
and the average of the periodograms is computed. x (n),l1=1,...,S are data segments
and each segment’s length equals M . The overlap ratio is frequently chosen as 50%

(M/2). The Welch PSD estimate is given by:
4
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where I5W(f) is the Welch PSD estimate, S is the number of segments, If’,(f) is
the periodogram estimate of the Ith segment, v(n) is the data-window, M is the
length of window sequence and of each signal segment. P is the total average of
v(n)|" and given as P:]/M Zil|v(n)|2. Since the spectrum of a finite-length
signal typically exhibits side-lobes due to discontinuities at the endpoints, a
nonrectangular data window is applied to reduce the spread of the spread of the
spectral energy into the side-lobes of the spectrum or “spectral leakage” while
increasing the width of spectral peaks. Moreover, with a suitable window (such as
Hamming, Hanning, or Kaiser), overlap rates of about half the section length have
been found to lower the variance of the estimate significantly. Welch has shown that,

for half-overlap:

var(P, (f)) =%var(l‘3}(f)) (2.1.4)

2.2 Harmonic Parameters

The Harmonic parameters used are the center frequency ( f.), the bandwidth ( f_) and

the spectral value at the center frequency (S ), defined as follows:



fe =ifox(f) iPxx(f) (2.2.1)

f, iy Y2
f =(Z(f —f,) P, (f) prx(f)j (2.2.2)

Sy, =Py (f.) (2.2.3)

where, P,(f) is the spectral density function, which is calculated for the frequency

band {f,,f,}.

2.3 Spectral Edge Frequency

The spectral edge frequency (SEF), usually expressed as “SEF p”, is defined as:
SEF fy
2o Pulf)=p2 " Po(f) (2.3.1)

It stands for the frequency, up to which p percent of the total power of the frequency

band {f,,f,} isaccumulated.

2.4 Spectral Entropy

The spectral entropy (SE) is given by:
SE = —ZI“ S, (f)logS, (f) / log(no. of discrete frequencies) (2.4.1)

where S (f) isrelative power, defined as:



S () =P, (f) iPxx(f) (2.4.2)

I.e. percentage of the total power. By dividing through by the logarithm of the number

of discrete frequencies, the spectral entropy can be normalized on the interval [0, 1].

2.5 Autoregressive Model

Autoregressive (AR) models of order p are defined by:

X == 0 A%, +Y, (2.5.1)

where X, is the signal at time t, a, are coefficients of the AR model and y, is a
zero mean white noise signal and the signal at time t is a linear combination of the

past p signals plus a white noise. If the AR model is being fit to measured data, the

AR coefficients a, minimize the mean-square prediction error of the model.

2.6 Hjorth Parameters

Hjorth parameters are computed from the variance of the signal x and its the first

14

and second derivatives x' , X" . If we denote the variance of x as var(x) , then

the Hjorth parameters are defined as follows:

Activity = ,/var(x) (2.6.1)



Mobility = /var(x’)/var(x) (2.6.2)

Complexity = \/var(x”) x var(x)/var(x)? (2.6.3)

The activity is the signal standard deviation. The mobility measures the spread of the
changes in the signal compared to the spread of the signal. The complexity is a

measure of how complicated the signal is.

2.7 Sample Entropy

Sample entropy (SampEn) is a measure of predictability/ regularity of a time series
and assigns a non-negative number to the sequence, with larger values corresponding
to more irregularity in the data. SampEn is the negative natural logarithm of the
conditional probability that two sequences similar for m points remain similar for
m+1 points, within a tolerance r, excluding self-matches. Thus, for a time series of
N points, {x(n),n=1,...,.N}, the k=1,..,N—m+1 vectors of pattern length m
are formed as X, (k)={x(k+i),i=0,..,m-1}. The distances among vectors are
calculated as the maximum absolute distance between their corresponding scalar
elements. The number of within vectors distance r of the vector i is denoted by

B, . Counting the number of different vectors and normalizing yields:

B™(r) = 1 Nf B (2.7.1)
N-m< N-m+1 o




Repeating the process for vectors of pattern length m+1 , B™(r) can be

calculated and SampEn is computed as:

SampEn(m, r,N) = —In[zmn:—l((r;)} (2.7.2)

Various applications have shown that m=1 or 2 are reasonable choices, and
r=0.1~0.2SD are suitable values to use. In this study, we take parameters m=2

and r=0.2SD.

2.8 Correlation Dimension

Correlation dimension (D2) is a measure that quantifies the complexity of the signal
by estimating the dimension of the attractor. It is estimated according to the

Grassberger and Procaccia algorithm:

D2 = Iim{w} 2.8.1)
>0 log,(r)

where m is the embedding dimension; C_(r) is the correlation integral defined as:

pa o(ryi-y) (2.8.2)

where the Heaviside function ©(x)=1 for x>0, ©®(x)=0 otherwise; y, are

state vectors in the embedding space; r is radius (starts at O and ends at the

maximum distance of the 'y, pairs); N is the number of different y, pairs. The

9



value of D2 is calculated from the slope within the scaling region of the curves

logC,,(r) versus log(r). A more detailed description of correlation dimension, from

a mathematical point of view, can be found in [9, 18].

2.9 Lempel-Ziv Complexity

Lempel-Ziv (LZ) complexity has been applied extensively in biomedical signal
analysis to estimate the complexity of discrete-time physiologic signals. Before
calculating the LZ complexity c(n) , typically the discrete-time biomedical signal
x(n) is converted into a binary sequence. By comparison with the threshold T,,

usually the median, the signal is converted into a 0-1 sequence P as follows:

P=s,s,,..,5, (2.9.1)
Where

- 0, if x(i)<T, (2.92)
' |1, otherwise A

To compute LZ complexity, the sequence P is scanned from left to right and the

complexity counter c(n) is increased by 1 every time a new subsequence of

consecutive characters is encountered. The LZ complexity is calculated as follows:

Let S and Q denote two subsequences of P and SQ be the concatenation of S

and Q , while sequence SQv is derived form SQ after its last character is deleted

10



(v denotes the operation of deleting the last character in the sequence). Let V (SQv)
denote the wvocabulary of all different subsequences of SQv . Initially,
c(n)=1,S=s,Q=s, , hence, SQv=s,. In general, S=s,s,,.,s,,Q=s,, and
SQv=s,s,,..,s,. If QeV(SQv) (i.e., Q is a subsequence of SQv), renew Q to
be s.,,S., and judge once again if QeV(SQv) or not, and so forth until
QgV(SQv) (i.e., Q is a new sequence), then Q=s .S S.. is not a

r+15r+27177 Sr+i

subsequence of SQv=s,S,,...,S,,;, , Increase c(n) by 1 and then renew
S=s,8,,..,5.,Q=s..,,. Repeat the above procedure until Q is the last character

of P. Then, c(n), the number of different patterns in P , is the LZ complexity.

According to Lempel and Ziv, for a 0-1 sequence:

rlwol c(n) =b(n) =n/log, n (2.9.3)

In order to obtain the complexity measure which is independent of the sequence

length, c(n) is normalized to compute the normalized LZ complexity:
C(n) =c(n)/b(n) (2.9.4)

The normalized LZ complexity reflects the rate of new patterns in a given sequence.
C(n)=0 implies an ordered process, C(n)=1 a totally stochastic process. The

larger the value of C(n) , the closer the sequence is to a stochastic process.

11



2.10 Principal Component Analysis (PCA)

PCA is a linear transformation that projects a data set onto a set of orthogonal
coordinates, i.e. the eigenvectors of its covariance matrix. In this way, it highlights the
similarities and differences contained in the data. Choosing the coordinates with the
highest variances, i.e. those corresponding to the largest singular values of the
covariance matrix, while eliminating coordinates with low variance, the dimension of
the data can be reduced. In principal component space the data is expressed in a way
that is easier for identifying patterns, while retaining most of the information in the

original space.

Let X bea nxN matrix of real numbers, X e R™, where n is the number of
features and N is the number of epochs. The column i of X represents the
feature vector of the ith epoch. The correlation matrix of X is given by:

c:%x-xT (2.10.1)

where we have removed the mean of the data: X;; =X, — X, . Since C is real
symmetric (nxn) matrix, it has a singular value decomposition (SVD) of the form:
C=U-A-U", where U is an orthogonal matrix (matrix of orthogonal unit vectors:
U'TU =1)and A isa diagonal matrix of singular values. The columns of U are the
singular vectors of C and the diagonal elements of A are the corresponding

singular values. If A=diag{4,4,... 4}, 4>4,>..>4 , correspondingly the

singular vectors are sorted in order of significance, then the PCA transformation of

12



X is given by:
S=U"-X (2.10.2)

which is the projection of the original feature matrix onto the orthogonal coordinates.
The singular vectors of C are called the principal components. By selecting only the
first d rows of S, we have reduced the feature vectorsin X from n to d. This

is the dimensional reduction characteristic of PCA.

2.11  The Gustafson—-Kessel Algorithm (GK-FCM)

The Gustafson—Kessel algorithm extends the standard fuzzy c-means (FCM)
algorithm by including an augmented version of the Euclidean distance to be in the

form:
Dy =(% —Vv) A(x -V), 1<i<c, 1<k <N (2.11.1)

The matrices A serve as optimization variables in the c-means function, allowing
each cluster to adapt the distance norm to the local topological structure of the data.

The Gustafson—Kessel algorithm minimizes the following objective function:

C

J(X;UV,A) =] i(,uik)m D;, (2.11.2)

i=1 1

where, U :[:uik] is a fuzzy partition matrix of the data X e R™, ¢ is the number

of clusters, V:[vl,vz,...,vc],vi eR" is a c-tuple of cluster prototypes and the

13



weighting parameter m e (1,00) determines the fuzziness of the resulting clusters (as
m — 1, the partition becomes hard; m — oo, the partition becomes maximally fuzzy).

The optimization of the objective function is subject to the standard constraints:
vik u, €[0,1], Vi 0<Y " u, <N, and vk Y u, =1 (2.11.3)

However, the objective function J decreases as the matrix A tends toward being

not positive definite. The usual way of obtaining a feasible solution is to constrain the

determinant of A , allowing the matrix A to vary with its determinant fixed. This

corresponds to optimizing the shape of the cluster while its volume remains constant:
|A|=p., o >0, Vi (2.11.4)

formulating the optimization problem using the Lagrange multiplier method, the

following expression for A is obtained (Gustafson and Kessel, 1979):

A=[pdet(F)]"F? (2.11.5)

where F is the fuzzy covariance matrix of the ith cluster given by:

Z:‘:l(:uik )m (Xk -V )(Xk -V )T

F- ,1<i<c (2.11.6)

| ZI’(\I:l('uik )m

Given the data set X , the number of clusters ¢ , the weighting exponent m>1, the

termination tolerance &>0 and volume constrains p, and initializing the partition
matrix U ( [yi(ko)} ) randomly, subject to (2.11.3), the Gustafson—Kessel algorithm is

implemented by the following steps:

14



Repeat for 1=1,2,...

Step 1: Compute the cluster center:

N (-\"
v = 2oi(4”) % q<i<c (2.11.7)

| Z:l:l('ui(klil) )m

Step 2: Compute the cluster covariance matrix F, , according to Eq. (2.11.6)

Step 3: Compute the distances ka,Ai , according to Eq. (2.11.1)

Step 4: Update the partition matrix:

1
M _
VL — )2/(m71)

z j:l( DikAs /DjkAj

(2.11.8)

until U0 -U0V <

A more detailed description of the Gustafson—Kessel algorithm, from a mathematical

point of view, can be found in the following [4, 5, 12, 16].

15



3. MATERIAL AND METHOD

3.1 The Dataset

The sleep EEG data used in this research were obtained from the MIT-BIH
Polysomnographic Database, a collection of recordings of multiple physiologic
signals during sleep. In this database, all 16 subjects were male, aged 32 to 56 (mean

age 43), with weights ranging from 89 to 152 kg (mean weight 119 kg).

The database consists of 18 records. Records slpOla and slpOlb are different segments
of one subject's polysomnogram, separated by a gap of about one hour; records slp02a
and slp02b are different segments of another subject's polysomnogram, separated by a
ten-minute gap. In this study, we combine slpOla and slpOlb as one record, slp01, as
well as slp02a and slp02b as one record, slp02. The remaining 14 records are all from

different subjects. Thus, 16 records were analyzed in this research.

The EEG electrodes placement scheme used in this database is the international 10-20
system illustrated in Figure 3.1, and Table 3.1.1 lists the EEG electrodes placement
for each record. The letter and number identify the area of the scalp where the
electrode is placed. The letters C and O stand for central and occipital lobes,
respectively. The even numbers refer to the right hemisphere, whereas the odd number

the left.

The EEG was recorded at a sampling rate of 250 Hz. The recordings are segmented

16



into epochs of 30 seconds and are annotated with respect to sleep stages according to
the criteria of Rechtschaffen and Kales. Table 3.1.2 summarizes the stage distribution
of each record, in which, ‘Epochs’, “W’, ‘N1°, ‘N2’°, ‘N3’, ‘R’ and ‘M’ stand for ‘the
number of total epochs of ‘wake’, ‘NREM stage 1°, ‘NREM stage 2°, ‘NREM stage

3’, ‘REM’ and ‘movement time’ respectively.

Figure 3.1: 10-20 system. This figure IS taken from
http://en.wikipedia.org/wiki/File:21_electrodes_of International_10-20_system_for_

EEG.svg

NASION

Peee®
©-@-@-O®
Q@0 d

~ -
~ I -
-L -
I

Table 3.1.1: EEG electrodes placement of each record

Record | Electrode-Pair
slp01 | C4-Al
17



http://upload.wikimedia.org/wikipedia/commons/7/70/21_electrodes_of_International_10-20_system_for_EEG.svg

slp02 | O2-Al
slp03 | C3-01
slp04 | C3-01
slp14 | C3-01
slpl6 | C3-0O1
slp32 | C4-Al
slp37 | C4-Al
slp4l | C4-Al
slp45 | C3-01
slp48 | C3-01
slp59 | C3-01
slp60 | C3-01
slp61 | C3-01
slp66 | C3-0O1
slp67x | C3-01

Table 3.1.2: The stage distribution of each record

Record | Epochs w N1 N2 N3 R M
slp01 600 187 28 233 113 38 1
slp02 630 151 32 325 7 106 9
slp03 720 151 105 312 78 74 0
slp04 720 162 60 442 33 23 0
slp14 714 321 188 126 42 36 1
slp16 694 316 108 181 24 65 0
slp32 640 394 27 159 60 0 0
slp37 698 75 21 591 0 11 0
slp4l 780 229 230 218 13 90 0
slp45 760 119 54 399 103 81 4
slp48 760 213 241 272 2 31 1
slp59 458 140 105 98 80 35 0
slp60 710 286 344 49 0 31 0
slp61 720 124 88 326 103 79 0
slp66 439 175 143 116 5 0 0

slp67x 154 72 41 40 1 0 0
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3.2 Method

In this study, we developed a method of wake/sleep scoring for particular subjects, as
is illustrated in the block diagram presented in Figure 3.2. The method is
unsupervised and consists of 5 consecutive steps: segmentation, feature extraction,
feature reduction, clustering and wake/sleep scoring. Step 1: Divide the EEG into
non-overlapping 10s segments (3 segments in each 30s epoch) rather than the
traditional 30s epochs. In this way, by score attached to a given epoch is determined
by the majority score of its segments, it will improve the scoring accuracy in the last
step (wake/sleep scoring). Also, by increasing the number of segments (by 3) in the
dataset, the data generated Step 3 (feature reduction) will be easier for clustering in
Step 4 (clustering). Step 2: For each segment, 19 features are extracted, and a feature
matrix of the entire sleep record is formed. Step 3: The feature matrix is scaled and
PCA is applied to project the data onto a lower dimension space (called principal
components space) that is easier for identifying patterns in the data while retaining
most of its information. The objective of classification in Step 4 is to separate wake
and sleep. Step 4: A fuzzy clustering algorithm, the Gustafson-Kessel Algorithm is
applied to the data set (in the principal components space) determined in Step 3. Step
5: Wake/sleep scoring is obtained by retrieving one characteristic feature of wake
stage as a wake stage indicator. The last 4 steps will be described in detail in the

following chapters.
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Figure 3.2: Schematic overview of our method for wake/sleep scoring

1. Segmentation

Segmentation length: 10s

l

2. Feature extraction

RSP, Harmonic Parameters, spectral edge
spectral entropy, autore gressive coefficients
Hjorth Parameters, Sample entropy

correlation dimension, Lempe FZiv complexity

I

3. Feature reduction

PCA

I

4. Classification

The Gustafzon-Kessel Algorithm

J

5. Wake/sleep scoring

3.3 Feature Extraction

In the context of EEG analysis, a feature is an index that mathematically characterizes
one aspect of the EEG signal. In feature extraction step, 19 features are extracted in

each 10s segment as described in the following.
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According to AASM Manual, each sleep stage is essentially visually distinguished by
some spectral property. In this study, the power spectral density (PSD) is estimated
using Welch’s method (2.1.1) in the frequency range between 0.5Hz and 45Hz.
Spectral features are obtained by dividing the spectrum into 7 frequency sub-bands as
presented in Table 3.3.1. For each sub-band, the relative spectral power (RSP) given
by the ratio between the sub-band spectral power and the total power is computed.
Harmonic parameters (2.1.2) that consist of center frequency, bandwidth and
magnitude of the PSD at the center frequency, 90% spectral edge (2.1.3) (the
frequency under which 90% of the spectrum is contained) and spectral entropy (2.1.4)
are also extracted in the frequency domain. The 1st autoregressive coefficient (2.1.5)
turns out to be a reliable feature for distinguishing wake and sleep. An AR model of
order 5 is chosen and by using Burg’s method the parameters of the AR model are
estimated. Hjorth parameters (2.1.6) that consist of activity, mobility and complexity
are calculated from the time series. Nonlinear time series analyses, such as sample
entropy (2.1.7, with pattern length m =2, tolerance r =0.2SD), correlation dimension
(2.1.8, with embedding dimension m =20, time lag z =10) and Lempel-Ziv

complexity (2.1.9) are also performed.

With the x-axis denoting the records and the y-axis denoting the value of a particular
feature, the performance of the 19 features are shown in Figure 3.3.1 to 3.3.19 (the
difference of wake and sleep is significant if p<0.05; if not, otherwise). In these

figures, the upper bound, median and lower bound of each error bar corresponds to
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the 75 th percentile, 50 th percentile and 25 th percentile, respectively of the feature
either in wake or sleep (X percentile means that X percent of the data is located within

this range).

Table 3.3: Spectral sub-bands used in RSP computation

sub-bands | range (Hz)

Delta 1 05-25

Delta 2 25-4

Theta 1 4-6

Theta 2 6-8

Alpha 8-12

Beta 1 12 -20

Beta 2 20 - 45
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Figure 3.3.1: Comparison of center frequency in wake and sleep (p<0.05)
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Figure 3.3.2: Comparison of bandwidth in wake and sleep (p<0.05; except slpl4

(p=0.1227) and slp60 (p=0.0729))
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Figure 3.3.3: Comparison of the PSD at the center frequency in wake and sleep

(p<0.05; except slp02 (p=0.1904), slp16 (p=0.0569) and slp59 (p=0.5139))
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Figure 3.3.4: Comparison of RSP Delta 1 in wake and sleep (p<0.05; except slp03

(p=0.2010) and slp67x (p=0.4176))
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Figure 3.3.5: Comparison of RSP Delta2 in wake and sleep (p<0.05)
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Figure 3.3.6: Comparison of RSP Thetal in wake and sleep (p<0.05; except slp37

(p=0.1862) and slp61 (p=0.4176))
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Figure 3.3.7: Comparison of RSP Theta2 in wake and sleep (p<0.05; except slp01

(p=0.1070) and slp59 (p=0.8035))
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Figure 3.3.8: Comparison of RSP Alpha in wake and sleep (p<0.05)
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Figure 3.3.9: Comparison of RSP Betal in wake and sleep (p<0.05)
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Figure 3.3.10: Comparison of RSP Beta2 in wake and sleep (p<0.05)
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Figure 3.3.11: Comparison of activity in wake and sleep (p<0.05, except slpl6

(p=0.1359))
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Figure 3.3.12: Comparison of mobility in wake and sleep (p<0.05; except slp37

(p=0.1849) and slp60 (p=0.1774))
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Figure 3.3.13: Comparison of complexity in wake and sleep (p<0.05)
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Figure 3.3.14: Comparison of sample entropy in wake and sleep (p<0.05)
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Figure 3.3.15: Comparison of the 1st autoregressive coefficient in wake and sleep

(p<0.05)
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Figure 3.3.16: Comparison of correlation dimension in wake and sleep (p<0.05)
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Figure 3.3.17: Comparison of Lempel-Ziv complexity in wake and sleep (p<0.05)
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Figure 3.3.18: Comparison of 90% spectral edge in wake and sleep (p<0.05)
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Figure 3.3.19: Comparison of spectral entropy in wake and sleep (p<0.05; except

slp41 (p=0.5436), slp60 (p=0.5429) and slp67x (p=0.2620))
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3.4 Feature Reduction

Next, PCA (2.10) is applied in order to extract the relevant information for separating
wake and sleep while reducing the redundancy in the feature set. Also, by reducing
the number of features while retaining most of the information, it helps to reduce the
“curse of dimensionality”, where the sparsity of data in a high dimensional feature

space would make traditional statistical methods fail.

In the previous section, feature extraction provides a feature vector to each 10s

segment, where each feature vector consists of 19 features. A feature matrix X is
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formed for each record: X e R™", where n is the number of features and N is
the number of 10s segments in a record. The column i of X represents the feature
vector of the ith segment. As features are measured in different scales, the feature
vector needs to be normalized, feature-by-feature before applying PCA. Otherwise,
features with larger scales would dominate in the PCA. Thus, each row of X (a

feature) is normalized by:

. XX

X, =—24 —Jm_j=12..,n 3.4.1
: Xj,max_xj,min . ( )
where X, .. and X, _ denote the minimum and maximum of the jth row

respectively.
Then, PCA is applied to transform the normalized feature matrix X to S by:
S=UT-X (3.4.2)

where SeR™™. The ith row of S is the projection of X on the ith principal
component sorted in order of significance. The significance of a principal component
is measured by its singular value and the number of principal components that we
select is determined by the cumulative contribution rate of the mth principal

component, given by:

n (3.4.3)

2

where A isthe ith eigenvalue.
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Take record slp01 as an example, Table 3.4.1 shows its accumulative contribution rate
of each principal component. From Table 3.4.1, we know the first 6 principal
components contain most of the information (95.59%) of the data. Figure 3.4.1

illustrates the data from slp01 projected onto the first 3 principal components.

In this study, we take the first p principal components that contain 95% of the

information. This is done simply by taking the first p rows of S , denoted by S
(SeRP™). Thus, S serves as the refined feature matrix for classification in the

upcoming step.

Table 3.4.1: Cumulative contribution rate of each principal component of slp01

i W@

1 0.7091
2 0.8455
3 0.8906
4 0.9221
5 0.9416
6 0.9559
7 0.9679
8 0.9764
9 0.9832
10 | 0.9879
11 | 0.9911
12 | 0.9938
13 | 0.9959
14 | 0.9975
15 | 0.9987
16 | 0.9996
17 | 1.0000
18 | 1.0000
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|19 | 1.0000 |

[1]: i stands for the ith principal component.

[2]: r stands for cumulative contribution rate.

Figure 3.4.1: The data from slp01 projected onto the first 3 principal components

slp01

0.5+,

the 3rd principal component

3.5 Clustering Analysis

In Figure 3.4.1, the data structure that PCA generates has two clusters, one belongs to

wake, and the other belongs to sleep. This motivates us to separate wake and sleep
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using a method of clustering analysis.

The objective of clustering analysis is to organize data into groups according to
similarities (often measured by means of a distance norm) among them. Clustering
analysis is an unsupervised method, that is, it doesn’t use class identifiers a priori.
There are two main categories of clustering methods; one is hard clustering and the
other is fuzzy clustering. In hard clustering, data is divided into distinct clusters,
where each data element belongs to one and only one cluster. Hence the clusters in a
hard clustering approach are disjoint. In fuzzy clustering, on the other hand, data
elements can belong to several clusters simultaneously, with different degrees of
membership which indicate the strength of the association between that data element

and a particular cluster.

As shown in Figure 3.4.1, fuzzy clustering is more natural than hard clustering in the
situation of wake and sleep separation, as objects on the boundaries between these

two classes are not disjoint, however conjoined.

Among fuzzy clustering algorithms, GK-FCM (2.11) is selected. It extends fuzzy
c-means (FCM) by employing an adaptive distance norm, in order to detect clusters
with different geometrical shapes. In this study, GK-FCM is implemented by using

the Fuzzy Clustering Toolbox in Matlab.

The dataset to be clustered is the refined feature matrix S (S eR™") generated by

PCA in the previous section. Each segment can be viewed as a data point of a p
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dimensional space. The input parameters of GK-FCM that we set are: the number of

clusters ¢=2 , the weighting exponent m=2, the termination tolerance &=10"°
and the volume constrains p, =1. the output of the method is a membership matrix
U (U eR*V). An element u; (uy €[0,1]) of this matrix represents the grade of
membership of the jth segment in cluster c,. The larger membership values indicate
higher confidence in the assignment of the data to the cluster. Then, we assign the |

th segment the number I =arg max 4. In this way, the dataset S is clustered into

two clusters labeled 1 and 2. Figure 3.5.1 illustrates the clustering result of slp01.

Figure 3.5.1: Clustering result of slp01

slp01

the 3rd principal component
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3.6 Wake/Sleep Scoring

Wake/sleep scoring is obtained by labeling the two clusters of dataset S either
“wake” or “sleep”. In this study, this is done by retrieving one of the characteristic
features of the wake stage: Relative Spectral Power of Alpha (RSP Alpha). According
to ASSM Manual, wake stage is characterized by alpha rhythm in EEG. By
computing the mean of RSP Alpha in each cluster, the cluster with the higher mean
RSP Alpha is labeled as “Wake”, the other as “Sleep”. After all the segments are

labeled, we label the 30s epochs according to the majority of the 3 sub-epochs label.
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4 RESULT

After all the epochs are labeled as “wake” or “sleep”, the scoring results in each
record are compared with actual stages that are labeled by an expert. The confusion
matrix of each record is obtained, and the mean of RSP Alpha in each cluster (labeled
1 or 2) is calculated. Table 1~16 summarize our classification results for the 16
records. The last row of these tables contains the mean of RSP Alpha in each cluster.
Recall our scoring rule in 3.6: the clusters with larger RSP Alpha are labeled as

“wake”, the other as “sleep”.

Sensitivity, specificity and accuracy are three metrics that are used to measure the

performance of a classifier. They are defined as:

e TP
sensitivity = ————— 4.1
Y TP +FN (41)

e FP
specificity = ——— 4.2
P Y FP +TN (4.2)
accuracy = TP+TN 4.3)

TP+TN +FP+FN

where TP, FN, FP and TN stand for true positive, false negative, false positive and
true negative respectively. Table 4.17 summaries the sensitivity, specificity and
accuracy of each record. The accuracies of 14 records are satisfactory (above 75%),

slp37 (36.10%) and slp60 (57.46%) are not as satisfactory.
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Table 4.1: Classification results for slp01

clusters
1 2
Actual Wake 168 19
Stage Sleep 25 388
mean of RSP Alpha 0.1367 0.0700
Table 4.2: Classification results for slp02
clusters
1 2
Actual Wake 131 20
Stage Sleep 91 388
mean of RSP Alpha 0.1046 0.0441
Table 4.3: Classification results for slp03
clusters
1 2
Actual Wake 92 59
Stage Sleep 55 514
mean of RSP Alpha 0.1899 0.0674
Table 4.4: Classification results for slp04
clusters
1 2
Actual Wake 20 142
Stage Sleep 504 54
mean of RSP Alpha 0.0598 0.4801
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Table 4.5: Classification results for slp14

clusters
1 2
Actual Wake 80 241
Stage Sleep 302 91
mean of RSP Alpha 0.0945 0.5682
Table 4.6: Classification results for slp16
clusters
1 2
Actual Wake 231 85
Stage Sleep 76 302
mean of RSP Alpha 0.3979 0.0859
Table 4.7: Classification results for slp32
clusters
1 2
Actual Wake 53 341
Stage Sleep 232 14
mean of RSP Alpha 0.0415 0.1947
Table 4.8: Classification results for slp37
clusters
1 2
Actual Wake 21 54
Stage Sleep 198 425
mean of RSP Alpha 0.0332 0.1024
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Table 4.9: Classification results for slp41

clusters
1 2
Actual Wake 194 35
Stage Sleep 91 460
mean of RSP Alpha 0.2582 0.0956
Table 4.10: Classification results for slp45
clusters
1 2
Actual Wake 38 81
Stage Sleep 600 41
mean of RSP Alpha 0.0513 0.1502
Table 4.11: Classification results for slp48
clusters
1 2
Actual Wake 46 167
Stage Sleep 491 56
mean of RSP Alpha 0.1206 0.3927
Table 4.12: Classification results for slp59
clusters
1 2
Actual Wake 38 102
Stage Sleep 288 30
mean of RSP Alpha 0.1001 0.4673
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Table 4.13: Classification results for slp60

clusters
1 2
Actual Wake 183 103
Stage Sleep 199 225
mean of RSP Alpha 0.0833 0.0344
Table 4.14: Classification results for slp61
clusters
1 2
Actual Wake 52 72
Stage Sleep 554 42
mean of RSP Alpha 0.0342 0.1310
Table 4.15: Classification results for slp66
clusters
1 2
Actual Wake 69 106
Stage Sleep 230 34
mean of RSP Alpha 0.0680 0.3369
Table 4.16: Classification results for slp67x
clusters
1 2
Actual Wake 30 42
Stage Sleep 75 7
mean of RSP Alpha 0.0596 0.0942
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Table 4.17: Sensitivity, specificity and accuracy of each record

Record | sensitivity | specificity | accuracy
slp01 89.84% 93.95% | 92.67%
slp02 86.75% 81.00% | 82.38%
slp03 60.93% 90.33% | 84.17%
slp04 | 87.65% 90.32% | 89.72%
slpl4 | 75.08% 76.84% | 76.05%
slp16 73.10% 79.89% | 76.80%
slp32 86.55% 94.31% | 89.53%
slp37 72.00% 31.78% | 36.10%
slp4l 84.72% 83.48% | 83.85%
slp45 68.07% 93.60% | 89.61%
slp48 78.40% 89.76% | 86.58%
slp59 72.86% 90.57% | 85.15%
slp60 63.99% 53.07% | 57.46%
slp61 58.06% 92.95% | 86.94%
slp66 60.57% 87.12% | 76.54%
slp67x | 58.33% 91.46% | 75.97%

average | 73.56% 82.53% | 79.35%
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5 CONCLUSION AND FUTURE WORK

From the previous section, the results for most subjects (14 out of 16) in the database
are satisfactory, although the number of epochs in wake and sleep in some cases are
highly unbalanced. We conclude that, at least in this database, the method we propose
for unsupervised wake/sleep scoring is applicable to most individuals. The future
work, on one hand, is to verify this conclusion by testing more datasets; including
selecting more relevant features and by applying more feasible techniques (in PSD

estimation, dimension reduction and unsupervised learning), to improve the results.

This thesis shows that by extracting a collection of features and then by applying
dimension reduction techniques, it is possible to generate a data structure in which
different sleep stages belongs to fairly distinctive clusters. Such a data structure is
appropriate for applying clustering analysis. According to AASM Manual, sleep is
subdivided into NREM (including N1, N2 and N3), REM and movement time. After
separating wake and sleep, the question facing us is whether or to what extent it is
possible to further separate sleep into NREM and REM based on a similar idea. To
this end, because NREM N1 is similar to REM in EEG, it may be necessary to use
other biosignals such as EOG and EMG to facilitate classification. Based on our
research, EMG features, such as center frequency, bandwidth, sample entropy, can
provide useful information for separating NREM and REM due to the fact that REM

presents low chin EMG tone.
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To achieve complete sleep staging with an unsupervised approach, a hierarchical

classification methodology is illustrated in Figure 5.1 maybe the most appropriate.

Figure 5.1: Hierarchical sleep stage classification

Wake

Epochs REM N1

Sleep MN1/M2

MREM N2

M3
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