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An Unsupervised Method for Wake/Sleep Scoring 

 

Abstract  

by 

 

JIN XING 

 

Visual sleep scoring of Polysomnograms (PSG) by an expert is a time-consuming 

process. Although a number of automatic sleep scoring methods have been proposed 

in literature, most of them are based on supervised algorithms, that is, labels in their 

training data assigned by an expert are required. In this thesis, we propose an 

unsupervised method for wake/sleep scoring without labels a priori. Features based on 

temporal and spectral analysis are extracted from a single channel of EEG. Principal 

Component Analysis (PCA) is used to reduce the number of features while identifying 

patterns in the data. The Gustafson–Kessel algorithm is used for clustering analysis 

and sleep scoring is done by retrieving one characteristic feature of wake: the alpha 

rhythm. Sixteen subjects from the MIT-BIH Polysomnographic Database were tested 

by this method. Compared to actual stage scoring, 14 have scoring accuracy above 75% 

and the average accuracy is 79.35%.
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1.  INTRODUCTION 

Polysomnography (PSG) is a comprehensive recording of the biophysiological 

changes that occur during sleep. It consists of various electrical biosignals including 

electroencephalography (EEG), electrooculography (EOG) and electromyography 

(EMG). These signals are segmented into epochs of 30 seconds and assigned a sleep 

stage by an expert. This procedure is called sleep scoring. However, it is a time 

consuming and subjective process. Thus, the development of an automatic sleep 

scoring system is desirable. 

Automatic sleep scoring has been addressed by many research groups. Supervised 

methods we discussed first. In [15], Hugo Simões et al. used R-square Pearson 

correlation coefficient and Bayesian classifier; using 19 of the most discriminate 

features selected from 204 features in 6-channel EEG, a 93% agreement with the 

expert is obtained for 2-class (wake and sleep) detection. In [31], Zhou Peng, et al 

(2011) combines Principal Component Analysis (PCA) and Support Vector Machine 

(SVM) to discriminate stage W, NREM stage 2 and NREM stage 3 for each subject; 

by testing 5 subjects, 87.9% accuracy is achieved on average. [13] (Salih Gunes et al, 

2010) proposed a feature weighting method based on k-means clustering and 

combined it with k-NN (k-nearest neighbor) and decision tree classifiers to classify 

sleep EEG into six sleep stages; it achieved 82.15% success rate using k-NN classifier 

for k a value of 40. Farideh Ebrahimi et al (2008) in [8], deployed wavelet packet 
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coefficients and artificial neural network and their result demonstrated that 4 sleep 

stages could be automatically discriminated with an accuracy of 93.0 ± 4.0%. In [27] 

Shing-Tai Pan et al (2012) developed a classification system based on Discrete 

Hidden Markov Model (DHMM) and 85.29% overall agreement between the expert 

and the results is presented. Other then supervised learning based methods, a few 

unsupervised sleep scoring schemes are also proposed. In [30], Hese et al (2001) 

implemented a semi-automatic method based on a modified version of k-means 

algorithm. In [11], I. Gath et al (1989) suggested computerized scoring of sleep EEG 

into various stages by fuzzy clustering. However, no result is presented in these two 

works. Jing Dong et al (2010) in [7], applied Empirical Model Decomposition (EMD) 

and k-means algorithm to stage wakefulness and three NREM sleep stages; only 60 ± 

5.0% agreement with the expert was attained. All of the high performances reported 

for their methods are based on supervised learning, that is, training data labeled by an 

expert is required. Therefore, it’s worthwhile to investigate the design of an 

unsupervised sleep scoring method without any label a priori. Such a system makes it 

possible to monitor a patient without requiring a sleep scoring of the PSG by an 

expert. Also, it would increase the time efficiency and reproducibility of sleep scoring. 

To this end, this thesis proposes an unsupervised wake/sleep scoring method, as the 

first step toward developing a complete sleep stages unsupervised scoring system. Our 

method only requires a single EEG channel. The similar patterns in EEG presented 

between wake and NREM (non-rapid eye movement) stage 1 or REM (rapid eye 
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movement) is what makes automated wake/sleep scoring challenging. Although other 

biosignals, such as EOG and EMG, maybe helpful, they are not used in our study. The 

data used in this study is from MIT-BIH Polysomnographic Database. All the 

algorithms are developed in the MATLAB environment.  

The thesis is organized as follows: Chapter 2 reviews the background algorithms used 

in our method; Chapter 3 gives the schematic overview of our method and discusses 

each of its steps in detail; Chapter 4 presents the results; Chapter 5 contains 

conclusions and future work. 
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2.  BACKGROUND ALGORITHMS  

2.1  Welch’s Method 

A method to estimate the power spectrum of a signal is to find the discrete-time 

Fourier transform of the signal and compute the magnitude squared of the result. This 

estimate is called the periodogram. For a signal  
1

( )
N

n
x n


 , the periodogram spectral 

estimator is computed as follows: 

2

1

1ˆ( ) ( )exp( 2 )
N

n

P f x n j fn
N




           (2.1.1) 

where ˆ( )P f  is the estimation of the periodogram. To ensure the estimate is 

asymptotically unbiased, that is, as the number of samples increases, the expected 

value of the periodogram approaches the true power spectral density (PSD), the 

magnitude squared of the FFT is scaled by the signal length N . The problem with 

the periodogram estimate of the PSD is that its variance is large and does not decrease 

as the number of samples increases.  

Welch’s method is a modified periodogram, where the data segments are windowed 

before computing the periodogram. In Welch’s method, signals are divided into 

overlapping segments, each data segment is windowed, periodograms are calculated 

and the average of the periodograms is computed. ( ), 1,...,lx n l S  are data segments 

and each segment’s length equals M . The overlap ratio is frequently chosen as 50% 

( 2M ). The Welch PSD estimate is given by: 
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1

1ˆ ˆ( ) ( )
S

w l

l

P f P f
S 

              (2.1.2) 

2

1

1 1ˆ ( ) ( ) ( )exp( 2 )
M

l l

n

P f v n x n j fn
M P




         (2.1.3) 

where ˆ ( )wP f  is the Welch PSD estimate, S  is the number of segments, ˆ ( )lP f  is 

the periodogram estimate of the l th segment, ( )v n  is the data-window, M  is the 

length of window sequence and of each signal segment. P  is the total average of 

2
( )v n  and given as 

2

1
1 ( )

M

n
P M v n


  . Since the spectrum of a finite-length 

signal typically exhibits side-lobes due to discontinuities at the endpoints, a 

nonrectangular data window is applied to reduce the spread of the spread of the 

spectral energy into the side-lobes of the spectrum or “spectral leakage” while 

increasing the width of spectral peaks. Moreover, with a suitable window (such as 

Hamming, Hanning, or Kaiser), overlap rates of about half the section length have 

been found to lower the variance of the estimate significantly. Welch has shown that, 

for half-overlap: 

9ˆ ˆvar( ( )) var( ( ))
8

w lP f P f
S

           (2.1.4) 

 

2.2  Harmonic Parameters 

The Harmonic parameters used are the center frequency ( cf ), the bandwidth ( f ) and 

the spectral value at the center frequency (
cf

S ), defined as follows: 
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( ) ( )
H H

L L

f f

c xx xx

f f

f fP f P f            (2.2.1) 

 

1 2

2
( ) ( )

H H

L L

f f

c xx xx

f f

f f f P f P f

 
  
 
         (2.2.2) 

( )
cf xx cS P f               (2.2.3) 

where, ( )xxP f  is the spectral density function, which is calculated for the frequency 

band  ,L Hf f . 

 

2.3  Spectral Edge Frequency  

The spectral edge frequency (SEF), usually expressed as “SEF p”, is defined as: 

( ) ( )
H

L L

SEF f

xx xxf f
P f p P f            (2.3.1) 

It stands for the frequency, up to which p percent of the total power of the frequency 

band  ,L Hf f  is accumulated. 

 

2.4  Spectral Entropy 

The spectral entropy (SE) is given by: 

( ) log ( ) log( . )
H

L

f

xx xxf
SE S f S f no of discrete frequencies    (2.4.1) 

where ( )xxS f  is relative power, defined as: 
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( ) ( ) ( )
H

L

f

xx xx xx

f

S f P f P f            (2.4.2) 

i.e. percentage of the total power. By dividing through by the logarithm of the number 

of discrete frequencies, the spectral entropy can be normalized on the interval [0, 1]. 

 

2.5  Autoregressive Model 

Autoregressive (AR) models of order p are defined by: 

1

p

t k t k tk
x a x y
               (2.5.1) 

where tx  is the signal at time t , ka  are coefficients of the AR model and ty  is a 

zero mean white noise signal and the signal at time t  is a linear combination of the 

past p signals plus a white noise. If the AR model is being fit to measured data, the 

AR coefficients ka  minimize the mean-square prediction error of the model.  

 

2.6  Hjorth Parameters 

Hjorth parameters are computed from the variance of the signal x  and its the first 

and second derivatives x  , x  . If we denote the variance of x  as var( )x  , then 

the Hjorth parameters are defined as follows: 

var( )Activity x             (2.6.1) 
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var( ) var( )Mobility x x
          (2.6.2) 

2var( ) var( ) var( )Complexity x x x  
       (2.6.3) 

The activity is the signal standard deviation. The mobility measures the spread of the 

changes in the signal compared to the spread of the signal. The complexity is a 

measure of how complicated the signal is. 

 

2.7  Sample Entropy 

Sample entropy (SampEn) is a measure of predictability/ regularity of a time series 

and assigns a non-negative number to the sequence, with larger values corresponding 

to more irregularity in the data. SampEn is the negative natural logarithm of the 

conditional probability that two sequences similar for m  points remain similar for 

1m  points, within a tolerance r , excluding self-matches. Thus, for a time series of 

N  points, { ( ), 1,..., }x n n N , the 1,..., 1k N m    vectors of pattern length m  

are formed as  ( ) ( ), 0,..., 1mX k x k i i m    . The distances among vectors are 

calculated as the maximum absolute distance between their corresponding scalar 

elements. The number of within vectors distance r  of the vector i  is denoted by 

iB  . Counting the number of different vectors and normalizing yields: 

1

1
( )

1

N m
m i

i

B
B r

N m N m






  

           (2.7.1) 
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Repeating the process for vectors of pattern length 1m  , 
1( )mB r

 can be 

calculated and SampEn is computed as: 

1( )
( , , ) ln

( )

m

m

B r
SampEn m r N

B r

 
   

 
         (2.7.2) 

Various applications have shown that 1m   or 2  are reasonable choices, and 

0.1~ 0.2r SD  are suitable values to use. In this study, we take parameters 2m   

and 0.2r SD . 

 

2.8  Correlation Dimension 

Correlation dimension (D2) is a measure that quantifies the complexity of the signal 

by estimating the dimension of the attractor. It is estimated according to the 

Grassberger and Procaccia algorithm: 

2

0
2

log ( ( ))
2 lim

log ( )

m

r

C r
D

r

 
  

 
           (2.8.1) 

where m  is the embedding dimension; ( )mC r  is the correlation integral defined as: 

 
, 1;

1
( )

pN

m i j

i j i jp

C r r y y
N  

             (2.8.2) 

where the Heaviside function ( ) 1x   for 0x  , ( ) 0x   otherwise; iy  are 

state vectors in the embedding space; r  is radius (starts at 0 and ends at the 

maximum distance of the iy  pairs); 
pN  is the number of different iy  pairs. The 
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value of D2 is calculated from the slope within the scaling region of the curves 

log ( )mC r  versus log( )r . A more detailed description of correlation dimension, from 

a mathematical point of view, can be found in [9, 18]. 

 

2.9  Lempel-Ziv Complexity  

Lempel-Ziv (LZ) complexity has been applied extensively in biomedical signal 

analysis to estimate the complexity of discrete-time physiologic signals. Before 

calculating the LZ  complexity ( )c n  , typically the discrete-time biomedical signal 

( )x n  is converted into a binary sequence. By comparison with the threshold dT , 

usually the median, the signal is converted into a 0-1 sequence P  as follows: 

1 2, ,..., nP s s s              (2.9.1) 

Where 

0, ( )

1,

d

i

if x i T
s

otherwise


 


           (2.9.2) 

To compute LZ complexity, the sequence P  is scanned from left to right and the 

complexity counter ( )c n  is increased by 1 every time a new subsequence of 

consecutive characters is encountered. The LZ complexity is calculated as follows: 

Let S  and Q  denote two subsequences of P  and SQ  be the concatenation of S  

and Q  , while sequence SQv  is derived form SQ  after its last character is deleted 
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( v  denotes the operation of deleting the last character in the sequence). Let ( )V SQv  

denote the vocabulary of all different subsequences of SQv . Initially, 

1 2( ) 1, ,c n S s Q s    , hence, 1SQv s . In general, 1 2 1, ,.., ,r rS s s s Q s    and 

1 2, ,.., rSQv s s s . If ( )Q V SQv  (i.e., Q  is a subsequence of SQv ), renew Q  to 

be 1 2,r rs s   and judge once again if ( )Q V SQv  or not, and so forth until 

( )Q V SQv  (i.e., Q  is a new sequence), then 1 2 ,...,r r r iQ s s s    is not a 

subsequence of 1 2 1, ,..., r iSQv s s s   , increase ( )c n  by 1 and then renew 

1 2 1, ,..., r i r iS s s s Q s   ， . Repeat the above procedure until Q  is the last character 

of P . Then, ( )c n , the number of different patterns in P  , is the LZ complexity. 

According to Lempel and Ziv, for a 0-1 sequence: 

2lim ( ) ( ) log
n

c n b n n n


             (2.9.3) 

In order to obtain the complexity measure which is independent of the sequence 

length, ( )c n  is normalized to compute the normalized LZ complexity: 

( ) ( ) ( )C n c n b n             (2.9.4) 

The normalized LZ complexity reflects the rate of new patterns in a given sequence. 

( ) 0C n   implies an ordered process, ( ) 1C n   a totally stochastic process. The 

larger the value of ( )C n  , the closer the sequence is to a stochastic process.  
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2.10  Principal Component Analysis (PCA) 

PCA is a linear transformation that projects a data set onto a set of orthogonal 

coordinates, i.e. the eigenvectors of its covariance matrix. In this way, it highlights the 

similarities and differences contained in the data. Choosing the coordinates with the 

highest variances, i.e. those corresponding to the largest singular values of the 

covariance matrix, while eliminating coordinates with low variance, the dimension of 

the data can be reduced. In principal component space the data is expressed in a way 

that is easier for identifying patterns, while retaining most of the information in the 

original space.  

Let X  be a n N  matrix of real numbers, n NX  , where n  is the number of 

features and N  is the number of epochs. The column i  of X  represents the 

feature vector of the i th epoch. The correlation matrix of X  is given by: 

1 TC X X
N

               (2.10.1) 

where we have removed the mean of the data: , ,i j i j iX X X   . Since C  is real 

symmetric ( n n ) matrix, it has a singular value decomposition (SVD) of the form: 

TC U U  , where U  is an orthogonal matrix (matrix of orthogonal unit vectors: 

TU U I ) and   is a diagonal matrix of singular values. The columns of U  are the 

singular vectors of C  and the diagonal elements of   are the corresponding 

singular values. If  1 2 1 2, ,..., , ...n ndiag           , correspondingly the 

singular vectors are sorted in order of significance, then the PCA transformation of 
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X  is given by:  

TS U X                (2.10.2) 

which is the projection of the original feature matrix onto the orthogonal coordinates. 

The singular vectors of C  are called the principal components. By selecting only the 

first d  rows of S , we have reduced the feature vectors in X  from n  to d . This 

is the dimensional reduction characteristic of PCA. 

 

2.11  The Gustafson–Kessel Algorithm (GK-FCM) 

The Gustafson–Kessel algorithm extends the standard fuzzy c-means (FCM) 

algorithm by including an augmented version of the Euclidean distance to be in the 

form: 

   2 , 1 , 1
i

T

ikA k i i k iD x v A x v i c k N            (2.11.1) 

The matrices iA  serve as optimization variables in the c-means function, allowing 

each cluster to adapt the distance norm to the local topological structure of the data. 

The Gustafson–Kessel algorithm minimizes the following objective function: 

  2

1 1

( ; , , )
i

c N
m

ik ikA

i k

J X U V A D
 

          (2.11.2) 

where,  ikU   is a fuzzy partition matrix of the data n NX  , c  is the number 

of clusters,  1 2, ,..., , n

c iV v v v v   is a c-tuple of cluster prototypes and the 



14 

 

weighting parameter (1, )m   determines the fuzziness of the resulting clusters (as 

1m , the partition becomes hard; m , the partition becomes maximally fuzzy). 

The optimization of the objective function is subject to the standard constraints: 

1 1
, [0,1], 0 , 1

N c

ik ik ikk i
i k u i u N and k u

 
           (2.11.3) 

However, the objective function J  decreases as the matrix iA  tends toward being 

not positive definite. The usual way of obtaining a feasible solution is to constrain the 

determinant of iA  , allowing the matrix iA  to vary with its determinant fixed. This 

corresponds to optimizing the shape of the cluster while its volume remains constant: 

, 0,i i iA i                (2.11.4) 

formulating the optimization problem using the Lagrange multiplier method, the 

following expression for iA  is obtained (Gustafson and Kessel, 1979): 

 
1 1det

n

i i i iA F F                (2.11.5) 

where iF  is the fuzzy covariance matrix of the i th cluster given by: 

    

 
1

1

, 1

N m T

ik k i k ik
i N m

ikk

x v x v
F i c









 
  



      (2.11.6) 

Given the data set X , the number of clusters c  , the weighting exponent 1m  , the 

termination tolerance 0   and volume constrains i  and initializing the partition 

matrix U ( 
 0

ik 
 

 ) randomly, subject to (2.11.3), the Gustafson–Kessel algorithm is 

implemented by the following steps: 



15 

 

Repeat for 1,2,...l   

Step 1: Compute the cluster center: 

 

 

( 1)

( ) 1

( 1)

1

, 1 .

mN l

ik kl k

i mN l

ikk

x
v i c













  



         (2.11.7) 

Step 2: Compute the cluster covariance matrix iF  , according to Eq. (2.11.6) 

Step 3: Compute the distances 
2

iikAD  , according to Eq. (2.11.1) 

Step 4: Update the partition matrix: 

 
( )

2 ( 1)

1

1

i j

l

ik mc

ikA jkAj
D D









          (2.11.8) 

until ( ) ( 1)l lU U   . 

A more detailed description of the Gustafson–Kessel algorithm, from a mathematical 

point of view, can be found in the following [4, 5, 12, 16]. 

 

 

 



16 

 

3.  MATERIAL AND METHOD  

3.1  The Dataset 

The sleep EEG data used in this research were obtained from the MIT-BIH 

Polysomnographic Database, a collection of recordings of multiple physiologic 

signals during sleep. In this database, all 16 subjects were male, aged 32 to 56 (mean 

age 43), with weights ranging from 89 to 152 kg (mean weight 119 kg).  

The database consists of 18 records. Records slp01a and slp01b are different segments 

of one subject's polysomnogram, separated by a gap of about one hour; records slp02a 

and slp02b are different segments of another subject's polysomnogram, separated by a 

ten-minute gap. In this study, we combine slp01a and slp01b as one record, slp01, as 

well as slp02a and slp02b as one record, slp02. The remaining 14 records are all from 

different subjects. Thus, 16 records were analyzed in this research. 

The EEG electrodes placement scheme used in this database is the international 10-20 

system illustrated in Figure 3.1, and Table 3.1.1 lists the EEG electrodes placement 

for each record. The letter and number identify the area of the scalp where the 

electrode is placed. The letters C and O stand for central and occipital lobes, 

respectively. The even numbers refer to the right hemisphere, whereas the odd number 

the left. 

The EEG was recorded at a sampling rate of 250 Hz. The recordings are segmented 
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into epochs of 30 seconds and are annotated with respect to sleep stages according to 

the criteria of Rechtschaffen and Kales. Table 3.1.2 summarizes the stage distribution 

of each record, in which, ‘Epochs’, ‘W’, ‘N1’, ‘N2’, ‘N3’, ‘R’ and ‘M’ stand for ‘the 

number of total epochs of ‘wake’, ‘NREM stage 1’, ‘NREM stage 2’, ‘NREM stage 

3’, ‘REM’ and ‘movement time’ respectively. 

 

Figure 3.1: 10-20 system. This figure is taken from 

http://en.wikipedia.org/wiki/File:21_electrodes_of_International_10-20_system_for_

EEG.svg 

 

 

Table 3.1.1: EEG electrodes placement of each record 

Record     Electrode-Pair 

slp01 C4-A1 

http://upload.wikimedia.org/wikipedia/commons/7/70/21_electrodes_of_International_10-20_system_for_EEG.svg
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slp02 O2-A1 

slp03 C3-O1 

slp04 C3-O1 

slp14 C3-O1 

slp16 C3-O1 

slp32 C4-A1 

slp37 C4-A1 

slp41 C4-A1 

slp45 C3-O1 

slp48 C3-O1 

slp59 C3-O1 

slp60 C3-O1 

slp61 C3-O1 

slp66 C3-O1 

slp67x C3-O1 

 

Table 3.1.2: The stage distribution of each record 

Record Epochs W N1 N2 N3 R M 

slp01 600 187 28 233 113 38 1 

slp02 630 151 32 325 7 106 9 

slp03 720 151 105 312 78 74 0 

slp04 720 162 60 442 33 23 0 

slp14 714 321 188 126 42 36 1 

slp16 694 316 108 181 24 65 0 

slp32 640 394 27 159 60 0 0 

slp37 698 75 21 591 0 11 0 

slp41 780 229 230 218 13 90 0 

slp45 760 119 54 399 103 81 4 

slp48 760 213 241 272 2 31 1 

slp59 458 140 105 98 80 35 0 

slp60 710 286 344 49 0 31 0 

slp61 720 124 88 326 103 79 0 

slp66 439 175 143 116 5 0 0 

slp67x 154 72 41 40 1 0 0 

 



19 

 

3.2  Method 

In this study, we developed a method of wake/sleep scoring for particular subjects, as 

is illustrated in the block diagram presented in Figure 3.2. The method is 

unsupervised and consists of 5 consecutive steps: segmentation, feature extraction, 

feature reduction, clustering and wake/sleep scoring. Step 1: Divide the EEG into 

non-overlapping 10s segments (3 segments in each 30s epoch) rather than the 

traditional 30s epochs. In this way, by score attached to a given epoch is determined 

by the majority score of its segments, it will improve the scoring accuracy in the last 

step (wake/sleep scoring). Also, by increasing the number of segments (by 3) in the 

dataset, the data generated Step 3 (feature reduction) will be easier for clustering in 

Step 4 (clustering). Step 2: For each segment, 19 features are extracted, and a feature 

matrix of the entire sleep record is formed. Step 3: The feature matrix is scaled and 

PCA is applied to project the data onto a lower dimension space (called principal 

components space) that is easier for identifying patterns in the data while retaining 

most of its information. The objective of classification in Step 4 is to separate wake 

and sleep. Step 4: A fuzzy clustering algorithm, the Gustafson-Kessel Algorithm is 

applied to the data set (in the principal components space) determined in Step 3. Step 

5: Wake/sleep scoring is obtained by retrieving one characteristic feature of wake 

stage as a wake stage indicator. The last 4 steps will be described in detail in the 

following chapters. 
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Figure 3.2: Schematic overview of our method for wake/sleep scoring 

 

 

3.3  Feature Extraction 

In the context of EEG analysis, a feature is an index that mathematically characterizes 

one aspect of the EEG signal. In feature extraction step, 19 features are extracted in 

each 10s segment as described in the following.  
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According to AASM Manual, each sleep stage is essentially visually distinguished by 

some spectral property. In this study, the power spectral density (PSD) is estimated 

using Welch’s method (2.1.1) in the frequency range between 0.5Hz and 45Hz. 

Spectral features are obtained by dividing the spectrum into 7 frequency sub-bands as 

presented in Table 3.3.1. For each sub-band, the relative spectral power (RSP) given 

by the ratio between the sub-band spectral power and the total power is computed. 

Harmonic parameters (2.1.2) that consist of center frequency, bandwidth and 

magnitude of the PSD at the center frequency, 90% spectral edge (2.1.3) (the 

frequency under which 90% of the spectrum is contained) and spectral entropy (2.1.4) 

are also extracted in the frequency domain. The 1st autoregressive coefficient (2.1.5) 

turns out to be a reliable feature for distinguishing wake and sleep. An AR model of 

order 5 is chosen and by using Burg’s method the parameters of the AR model are 

estimated. Hjorth parameters (2.1.6) that consist of activity, mobility and complexity 

are calculated from the time series. Nonlinear time series analyses, such as sample 

entropy (2.1.7, with pattern length m =2, tolerance r =0.2SD), correlation dimension 

(2.1.8, with embedding dimension m =20, time lag  =10) and Lempel-Ziv 

complexity (2.1.9) are also performed.  

With the x-axis denoting the records and the y-axis denoting the value of a particular 

feature, the performance of the 19 features are shown in Figure 3.3.1 to 3.3.19 (the 

difference of wake and sleep is significant if p<0.05; if not, otherwise). In these 

figures, the upper bound, median and lower bound of each error bar corresponds to 
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the 75 th percentile, 50 th percentile and 25 th percentile, respectively of the feature 

either in wake or sleep (X percentile means that X percent of the data is located within 

this range). 

 

Table 3.3: Spectral sub-bands used in RSP computation 

sub-bands range (Hz) 

Delta 1 0.5 - 2.5 

Delta 2 2.5 - 4 

Theta 1 4 - 6 

Theta 2 6 - 8 

Alpha 8 - 12 

Beta 1 12 - 20 

Beta 2 20 - 45 
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Figure 3.3.1: Comparison of center frequency in wake and sleep (p<0.05) 

 

Figure 3.3.2: Comparison of bandwidth in wake and sleep (p<0.05; except slp14 

(p=0.1227) and slp60 (p=0.0729)) 
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Figure 3.3.3: Comparison of the PSD at the center frequency in wake and sleep 

(p<0.05; except slp02 (p=0.1904), slp16 (p=0.0569) and slp59 (p=0.5139)) 

 

Figure 3.3.4: Comparison of RSP Delta 1 in wake and sleep (p<0.05; except slp03 

(p=0.2010) and slp67x (p=0.4176)) 
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Figure 3.3.5: Comparison of RSP Delta2 in wake and sleep (p<0.05) 

 

Figure 3.3.6: Comparison of RSP Theta1 in wake and sleep (p<0.05; except slp37 

(p=0.1862) and slp61 (p=0.4176)) 
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Figure 3.3.7: Comparison of RSP Theta2 in wake and sleep (p<0.05; except slp01 

(p=0.1070) and slp59 (p=0.8035)) 

 

Figure 3.3.8: Comparison of RSP Alpha in wake and sleep (p<0.05) 

 

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

sl
p01

sl
p02

sl
p03

sl
p04

sl
p14

sl
p16

sl
p32

sl
p37

sl
p41

sl
p45

sl
p48

sl
p59

sl
p60

sl
p61

sl
p66

sl
p67

x

R
S

P
 T

h
e
ta

2

 

 

W

S

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

sl
p01

sl
p02

sl
p03

sl
p04

sl
p14

sl
p16

sl
p32

sl
p37

sl
p41

sl
p45

sl
p48

sl
p59

sl
p60

sl
p61

sl
p66

sl
p67

x

R
S

P
 A

lp
h
a

 

 

W

S



27 

 

Figure 3.3.9: Comparison of RSP Beta1 in wake and sleep (p<0.05) 

 

Figure 3.3.10: Comparison of RSP Beta2 in wake and sleep (p<0.05) 
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Figure 3.3.11: Comparison of activity in wake and sleep (p<0.05, except slp16 

(p=0.1359)) 

 

Figure 3.3.12: Comparison of mobility in wake and sleep (p<0.05; except slp37 

(p=0.1849) and slp60 (p=0.1774)) 
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Figure 3.3.13: Comparison of complexity in wake and sleep (p<0.05) 

 

Figure 3.3.14: Comparison of sample entropy in wake and sleep (p<0.05) 
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Figure 3.3.15: Comparison of the 1st autoregressive coefficient in wake and sleep 

(p<0.05) 

 

Figure 3.3.16: Comparison of correlation dimension in wake and sleep (p<0.05) 
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Figure 3.3.17: Comparison of Lempel-Ziv complexity in wake and sleep (p<0.05) 

 

Figure 3.3.18: Comparison of 90% spectral edge in wake and sleep (p<0.05) 
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Figure 3.3.19: Comparison of spectral entropy in wake and sleep (p<0.05; except 

slp41 (p=0.5436), slp60 (p=0.5429) and slp67x (p=0.2620)) 
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formed for each record: n NX  , where n  is the number of features and N  is 

the number of 10s segments in a record. The column i  of X  represents the feature 

vector of the i th segment. As features are measured in different scales, the feature 

vector needs to be normalized, feature-by-feature before applying PCA. Otherwise, 

features with larger scales would dominate in the PCA. Thus, each row of X  (a 

feature) is normalized by: 

,min

,max ,min

ˆ , 1,2,...,
j j

j

j j

X X
X j n

X X


 


         (3.4.1) 

where 
,minjX  and 

,maxjX  denote the minimum and maximum of the j th row 

respectively.  

Then, PCA is applied to transform the normalized feature matrix X̂  to S  by: 

ˆ ˆTS U X                (3.4.2) 

where ˆ n NS  . The i th row of Ŝ  is the projection of X̂  on the i th principal 

component sorted in order of significance. The significance of a principal component 

is measured by its singular value and the number of principal components that we 

select is determined by the cumulative contribution rate of the m th principal 

component, given by: 

1

1

,

m

ii

n

ii

m n












             (3.4.3) 

where i  is the i th eigenvalue.  
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Take record slp01 as an example, Table 3.4.1 shows its accumulative contribution rate 

of each principal component. From Table 3.4.1, we know the first 6 principal 

components contain most of the information (95.59%) of the data. Figure 3.4.1 

illustrates the data from slp01 projected onto the first 3 principal components.  

In this study, we take the first p  principal components that contain 95% of the 

information. This is done simply by taking the first p  rows of Ŝ  , denoted by S  

( p NS  ). Thus, S  serves as the refined feature matrix for classification in the 

upcoming step. 

 

Table 3.4.1: Cumulative contribution rate of each principal component of slp01 

i
 [1]

 r
 [2]

 

1 0.7091 

2 0.8455 

3 0.8906 

4 0.9221 

5 0.9416 

6 0.9559 

7 0.9679 

8 0.9764 

9 0.9832 

10 0.9879 

11 0.9911 

12 0.9938 

13 0.9959 

14 0.9975 

15 0.9987 

16 0.9996 

17 1.0000 

18 1.0000 

http://en.wikipedia.org/wiki/Graphene#cite_note-Nov_04-15
http://en.wikipedia.org/wiki/Graphene#cite_note-Nov_04-15
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19 1.0000 

[1]: i  stands for the i th principal component. 

[2]: r  stands for cumulative contribution rate.  

 

Figure 3.4.1: The data from slp01 projected onto the first 3 principal components 
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using a method of clustering analysis. 

The objective of clustering analysis is to organize data into groups according to 

similarities (often measured by means of a distance norm) among them. Clustering 

analysis is an unsupervised method, that is, it doesn’t use class identifiers a priori. 

There are two main categories of clustering methods; one is hard clustering and the 

other is fuzzy clustering. In hard clustering, data is divided into distinct clusters, 

where each data element belongs to one and only one cluster. Hence the clusters in a 

hard clustering approach are disjoint. In fuzzy clustering, on the other hand, data 

elements can belong to several clusters simultaneously, with different degrees of 

membership which indicate the strength of the association between that data element 

and a particular cluster.  

As shown in Figure 3.4.1, fuzzy clustering is more natural than hard clustering in the 

situation of wake and sleep separation, as objects on the boundaries between these 

two classes are not disjoint, however conjoined.  

Among fuzzy clustering algorithms, GK-FCM (2.11) is selected. It extends fuzzy 

c-means (FCM) by employing an adaptive distance norm, in order to detect clusters 

with different geometrical shapes. In this study, GK-FCM is implemented by using 

the Fuzzy Clustering Toolbox in Matlab.  

The dataset to be clustered is the refined feature matrix S  ( p NS  ) generated by 

PCA in the previous section. Each segment can be viewed as a data point of a p

http://en.wikipedia.org/w/index.php?title=Hard_clustering&action=edit&redlink=1
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dimensional space. The input parameters of GK-FCM that we set are: the number of 

clusters 2c   , the weighting exponent 2m  , the termination tolerance 610   

and the volume constrains 1i  . the output of the method is a membership matrix 

U ( 2 NU  ). An element 
iju ( [0,1]iju  ) of this matrix represents the grade of 

membership of the j th segment in cluster ic . The larger membership values indicate 

higher confidence in the assignment of the data to the cluster. Then, we assign the j

th segment the number ˆ arg max ij
i

i  . In this way, the dataset S  is clustered into 

two clusters labeled 1 and 2. Figure 3.5.1 illustrates the clustering result of slp01.  

 

Figure 3.5.1: Clustering result of slp01 
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3.6  Wake/Sleep Scoring  

Wake/sleep scoring is obtained by labeling the two clusters of dataset S  either 

“wake” or “sleep”. In this study, this is done by retrieving one of the characteristic 

features of the wake stage: Relative Spectral Power of Alpha (RSP Alpha). According 

to ASSM Manual, wake stage is characterized by alpha rhythm in EEG. By 

computing the mean of RSP Alpha in each cluster, the cluster with the higher mean 

RSP Alpha is labeled as “Wake”, the other as “Sleep”. After all the segments are 

labeled, we label the 30s epochs according to the majority of the 3 sub-epochs label.  
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4  RESULT 

After all the epochs are labeled as “wake” or “sleep”, the scoring results in each 

record are compared with actual stages that are labeled by an expert. The confusion 

matrix of each record is obtained, and the mean of RSP Alpha in each cluster (labeled 

1 or 2) is calculated. Table 1~16 summarize our classification results for the 16 

records. The last row of these tables contains the mean of RSP Alpha in each cluster. 

Recall our scoring rule in 3.6: the clusters with larger RSP Alpha are labeled as 

“wake”, the other as “sleep”. 

Sensitivity, specificity and accuracy are three metrics that are used to measure the 

performance of a classifier. They are defined as: 

TP
sensitivity

TP FN



           (4.1) 

FP
specificity

FP TN



           (4.2) 

TP TN
accuracy

TP TN FP FN




  
         (4.3) 

where TP, FN, FP and TN stand for true positive, false negative, false positive and 

true negative respectively. Table 4.17 summaries the sensitivity, specificity and 

accuracy of each record. The accuracies of 14 records are satisfactory (above 75%), 

slp37 (36.10%) and slp60 (57.46%) are not as satisfactory. 
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Table 4.1: Classification results for slp01 

 
clusters 

1 2 

Actual 

Stage  

Wake 168 19 

Sleep 25 388 

mean of RSP Alpha 0.1367 0.0700 

 

Table 4.2: Classification results for slp02 

 
clusters 

1 2 

Actual 

Stage 

Wake 131 20 

Sleep 91 388 

mean of RSP Alpha 0.1046 0.0441 

 

Table 4.3: Classification results for slp03 

 
clusters 

1 2 

Actual 

Stage 

Wake 92 59 

Sleep 55 514 

mean of RSP Alpha 0.1899 0.0674 

 

Table 4.4: Classification results for slp04 

 
clusters 

1 2 

Actual 

Stage 

Wake 20 142 

Sleep 504 54 

mean of RSP Alpha 0.0598 0.4801 
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Table 4.5: Classification results for slp14 

 
clusters 

1 2 

Actual 

Stage 

Wake 80 241 

Sleep 302 91 

mean of RSP Alpha 0.0945 0.5682 

 

Table 4.6: Classification results for slp16 

 
clusters 

1 2 

Actual 

Stage 

Wake 231 85 

Sleep 76 302 

mean of RSP Alpha 0.3979 0.0859 

 

Table 4.7: Classification results for slp32 

 
clusters 

1 2 

Actual 

Stage 

Wake 53 341 

Sleep 232 14 

mean of RSP Alpha 0.0415 0.1947 

 

Table 4.8: Classification results for slp37 

 
clusters 

1 2 

Actual 

Stage 

Wake 21 54 

Sleep 198 425 

mean of RSP Alpha 0.0332 0.1024 
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Table 4.9: Classification results for slp41 

 
clusters 

1 2 

Actual 

Stage 

Wake 194 35 

Sleep 91 460 

mean of RSP Alpha 0.2582 0.0956 

 

Table 4.10: Classification results for slp45 

 
clusters 

1 2 

Actual 

Stage 

Wake 38 81 

Sleep 600 41 

mean of RSP Alpha 0.0513 0.1502 

 

Table 4.11: Classification results for slp48 

 
clusters 

1 2 

Actual 

Stage 

Wake 46 167 

Sleep 491 56 

mean of RSP Alpha 0.1206 0.3927 

 

Table 4.12: Classification results for slp59 

 
clusters 

1 2 

Actual 

Stage 

Wake 38 102 

Sleep 288 30 

mean of RSP Alpha 0.1001 0.4673 
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Table 4.13: Classification results for slp60 

 
clusters 

1 2 

Actual 

Stage 

Wake 183 103 

Sleep 199 225 

mean of RSP Alpha 0.0833 0.0344 

 

Table 4.14: Classification results for slp61 

 
clusters 

1 2 

Actual 

Stage 

Wake 52 72 

Sleep 554 42 

mean of RSP Alpha 0.0342 0.1310 

 

Table 4.15: Classification results for slp66 

 
clusters 

1 2 

Actual 

Stage 

Wake 69 106 

Sleep 230 34 

mean of RSP Alpha 0.0680 0.3369 

 

Table 4.16: Classification results for slp67x 

 
clusters 

1 2 

Actual 

Stage 

Wake 30 42 

Sleep 75 7 

mean of RSP Alpha 0.0596 0.0942 
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Table 4.17: Sensitivity, specificity and accuracy of each record 

Record sensitivity specificity accuracy 

slp01 89.84% 93.95% 92.67% 

slp02 86.75% 81.00% 82.38% 

slp03 60.93% 90.33% 84.17% 

slp04 87.65% 90.32% 89.72% 

slp14 75.08% 76.84% 76.05% 

slp16 73.10% 79.89% 76.80% 

slp32 86.55% 94.31% 89.53% 

slp37 72.00% 31.78% 36.10% 

slp41 84.72% 83.48% 83.85% 

slp45 68.07% 93.60% 89.61% 

slp48 78.40% 89.76% 86.58% 

slp59 72.86% 90.57% 85.15% 

slp60 63.99% 53.07% 57.46% 

slp61 58.06% 92.95% 86.94% 

slp66 60.57% 87.12% 76.54% 

slp67x 58.33% 91.46% 75.97% 

average 73.56% 82.53% 79.35% 
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5  CONCLUSION AND FUTURE WORK  

From the previous section, the results for most subjects (14 out of 16) in the database 

are satisfactory, although the number of epochs in wake and sleep in some cases are 

highly unbalanced. We conclude that, at least in this database, the method we propose 

for unsupervised wake/sleep scoring is applicable to most individuals. The future 

work, on one hand, is to verify this conclusion by testing more datasets; including 

selecting more relevant features and by applying more feasible techniques (in PSD 

estimation, dimension reduction and unsupervised learning), to improve the results. 

This thesis shows that by extracting a collection of features and then by applying 

dimension reduction techniques, it is possible to generate a data structure in which 

different sleep stages belongs to fairly distinctive clusters. Such a data structure is 

appropriate for applying clustering analysis. According to AASM Manual, sleep is 

subdivided into NREM (including N1, N2 and N3), REM and movement time. After 

separating wake and sleep, the question facing us is whether or to what extent it is 

possible to further separate sleep into NREM and REM based on a similar idea. To 

this end, because NREM N1 is similar to REM in EEG, it may be necessary to use 

other biosignals such as EOG and EMG to facilitate classification. Based on our 

research, EMG features, such as center frequency, bandwidth, sample entropy, can 

provide useful information for separating NREM and REM due to the fact that REM 

presents low chin EMG tone.  
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To achieve complete sleep staging with an unsupervised approach, a hierarchical 

classification methodology is illustrated in Figure 5.1 maybe the most appropriate. 

 

Figure 5.1: Hierarchical sleep stage classification 
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