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1. Executive Summary - What are the key takeaways? What are the key next steps? 

 

Malaria is a severe and often fatal disease. Conventional malaria detections are performed by 

microscopists who analyze microscopic blood smear images in laboratory settings, which requires human 

expertise and large investments. These resources may be inadequate in developing counties, where 

malaria is more predominant. Deep learning models thus may play a role in facilitating malaria detection 

and reducing healthcare costs. In this study, I build a Convolutional Neural Network (CNN) based neural 

network algorithm to classify images of blood cells into being parasitized or uninfected. The algorithm 

achieves high overall accuracy, about 98%. Other CNN models with similar structures also perform very 

well with similar performance. Thus, the model performance is robust to CNNs with varying 

configurations. As such, deep learning techniques show potential in achieving high accuracy even being 

applied to the healthcare setting fully automatically. Further tuning of the model may obtain even better 

performance. As smartphones are widely used, apps based on deep learning could be developed so that 

malaria detection can be widely conducted even with smartphones, increasing the cost-efficiency and the 

number of tests. However, the algorithm shows limitations as certain uninfected cells are wrongly 

classified while it fails to detect certain parasitized cells. This provides a caveat in applying the algorithm 

to actual healthcare settings and points to a direction for future improvement. 

 

 

2. Problem and Solution Summary 

2.1 Research Question - What problem was being solved? 

 

Malaria is a severe and often fatal disease caused by parasites such as Plasmodium falciparum. 

Conventional malaria detections are conducted by microscopists who analyze microscopic blood smear 

images in laboratories. Their accuracy and efficiency mainly depend on the level and availability of 

human expertise. For these reasons, deep learning models can aid microscopists in making decisions or 

even conducting the analysis automatically. They could significantly streamline the detection process and 

reduce health care costs if successful. 

This project aims to build and evaluate Deep Learning algorithms based on the Convolutional Neural 

Network (CNN) to classify malaria-infected cells from non-infected ones. To this end, I use a dataset 

from the US National Institutes of Health (NIH), which contains 27,558 different malaria-infected or non-

infected blood cell images from 150 malaria-infected patients and 50 healthy patients.  

 

 

2.2 Methodology - What are the key points that describe the final proposed solution design? 

 

2.2.1 Data Processing  

Each image from the NIH has a label associated with it, either parasitized or uninfected, and contains 

three color layers, red, green, and blue (RGB). I resized each image to 64×64. There are 24,958 training 

images for learning the parameters of the neural network. Out of all the training images, 12,582 are 

parasitized, and 12,376 are uninfected. Also, there are 2,600 testing images to evaluate the neural network 

built. Out of all the testing images, 1,300 are parasitized, and 1,300 are uninfected. Thus, the numbers of 

parasitized or uninfected blood cell images are balanced for training and testing data. 

Figure 1 shows sample images of parasitized and uninfected blood cells. We observe that parasitized 

blood cells are typically stained in dark purple or pink spots, while uninfected blood cells typically have 

no such spots and are uniform. 
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Figure 1: Sample images of parasitized and uninfected blood cells 

 

 
 

 

2.2.2 Building CNN-Based Neural Network 

CNN classifies images by processing the image through several layers. Three types of layers contained in 

a typical CNN are listed and described below:  

1. Convolutional layer. This first layer applies a kernel to scan the input image, creating an output 

layer. 

2. Pooling layer. This intermediate layer applies operations (e.g., max pooling, dropout, and batch 

normalization) to alleviate the overfitting on the training data. 

3. Fully connected layer. This last layer first flattens the processed image into a vector and then runs 

it through a fully connected neural network for classification. 

Note that the convolutional layer and the pooling layer can be repeated before moving onto the final layer. 

Figure 2 illustrates a typical architecture for CNN. 

 

Figure 2: Architecture for a typical CNN (Source: ResearchGate) 

 

 
 

In this study, I built a CNN-based neural network with a kernel size of 2×2, a dropout rate of 40%, ReLU 

as the activation function, and softmax as the activation function for the final classification. Figure 3 

shows the architecture of my neural network. 

  

https://www.researchgate.net/figure/A-typical-CNN-model-is-composed-of-convolutional-layers-pooling-layers-and-fully_fig1_331991539
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Figure 3: Architecture for the CNN used in this study 

 

 
Note: The number of total parameters is 539,138, the number of trainable parameters is 539,138, and the 

number of non-trainable parameters is 0. 

 

 

2.3 Evaluation - Why is this a 'valid' solution that is likely to solve the problem? 

 

Figure 4 shows the evaluation graph, in which the validation split is 0.2, i.e., 20 percent of the training 

data are kept aside to test the model performance during the model building phase. The model 

performance is measured by the overall accuracy. The training and validation accuracy become at the 

same level as the number of iterations (epochs) approaches 4. 

The model achieves an overall accuracy of 98% for the testing data. Other models with similar structures, 

such as those with additional layers, those with batch normalization and LeakyReLU as the activation 

function, those with augmented images, or pre-trained models (e.g., VGG16), all achieve over 97% 

accuracy. Therefore, the model performance is robust with different similar structures of CNN. 

Figure 5 shows the confusion matrix. 

Figure 6 shows error samples, which are image samples that the CNN fails to classify correctly. Certain 

uninfected cells (labeled 0) have purple spots and therefore are wrongly classified as being parasitized by 

the CNN. On the other hand, certain parasitized cells (labeled 1) have purple spots, but the CNN fails to 

detect them. 

 

 

 

 

 

 

 

 

 Layer Output Shape  Parameter #   

Conv2D (None, 64, 64, 32) 416

Max Pooling (None, 32, 32, 32) 0

Dropout (None, 32, 32, 32) 0

Conv2D (None, 32, 32, 32) 4128

Max Pooling (None, 16, 16, 32) 0

Dropout (None, 16, 16, 32) 0

Conv2D (None, 16, 16, 32) 4128

Max Pooling (None, 8, 8, 32)  0

Dropout (None, 8, 8, 32) 0

Conv2D (None, 8, 8, 32) 4128

Max Pooling (None, 4, 4, 32) 0

Dropout (None, 4, 4, 32) 0

Flatten (None, 512)  0

Dense (None, 512)  262656

Dropout (None, 512)  0

Dense (None, 512)  262656

Dropout (None, 512)  0

Dense (None, 2)  1026
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Figure 4: Evaluation graph 

 

 
 

Figure 5: The confusion matrix 
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Figure 6: Error samples 

 

 
Note: Uninfected cells are labeled 0. Parasitized cells are labeled 1. 

 

 

3. Recommendations for Implementation - What are some key recommendations to implement the 

solutions? What are the key actionables for stakeholders? What is the expected benefit and/or costs? 

What are the key risks and challenges? What further analysis needs to be done or what other associated 

problems need to be solved? 

 

Figure 6 shows the limitations of the algorithm built as certain uninfected cells are wrongly classified 

while it fails to detect certain parasitized cells. This points to a direction for future improvement. The 

model performance may be further improved by: 

1. Adjusting the network structure (e.g., the number of layers, the number of nodes in each layer, 

activation functions, etc.) 

2. Tuning hyperparameters (e.g., initial parameters, step size, regularization, stopping, the shape of a 

local detector, etc.) 

3. Using alternative pre-trained models (e.g., VGG-19). 

4. Adopting supervised learning (e.g., KNN, random forest, logistic regression) or unsupervised 

learning (e.g., PCA) for classification instead of a fully connected neural network. 

 



Malaria Detection Using Deep Learning
Loading libraries

Loading the data

(24958, 64, 64, 3)
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(24958,)
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Data processing

0 255
0 255

1    12582
0    12376
dtype: int64

0    1300

1    1300

dtype: int64


Building CNN-Based Neural Network

Model: "sequential_1"

_________________________________________________________________

 Layer (type)                Output Shape              Param #   

=================================================================

 conv2d_4 (Conv2D)           (None, 64, 64, 32)        416       

                                                                 

 max_pooling2d_4 (MaxPooling  (None, 32, 32, 32)       0         

 2D)                                                             

                                                                 

 dropout_6 (Dropout)         (None, 32, 32, 32)        0         

                                                                 

 conv2d_5 (Conv2D)           (None, 32, 32, 32)        4128      

                                                                 

 max_pooling2d_5 (MaxPooling  (None, 16, 16, 32)       0         

 2D)                                                             

                                                                 

 dropout_7 (Dropout)         (None, 16, 16, 32)        0         

                                                                 

 conv2d_6 (Conv2D)           (None, 16, 16, 32)        4128      

                                                                 

 max_pooling2d_6 (MaxPooling  (None, 8, 8, 32)         0         

 2D)                                                             

                                                                 

 dropout_8 (Dropout)         (None, 8, 8, 32)          0         

                                                                 

 conv2d_7 (Conv2D)           (None, 8, 8, 32)          4128      

                                                                 

 max_pooling2d_7 (MaxPooling  (None, 4, 4, 32)         0         

 2D)                                                             

                                                                 

 dropout_9 (Dropout)         (None, 4, 4, 32)          0         

                                                                 

 flatten_1 (Flatten)         (None, 512)               0         

                                                                 

 dense_3 (Dense)             (None, 512)               262656    

                                                                 

 dropout_10 (Dropout)        (None, 512)               0         

                                                                 

 dense_4 (Dense)             (None, 512)               262656    

                                                                 

 dropout_11 (Dropout)        (None, 512)               0         

                                                                 

 dense_5 (Dense)             (None, 2)                 1026      

                                                                 

=================================================================

Total params: 539,138

Trainable params: 539,138

Non-trainable params: 0

_________________________________________________________________


Epoch 1/20
624/624 [==============================] - 73s 116ms/step - loss: 0.4579 - accuracy: 0.7730 - val_loss: 0.2110 - val_accuracy: 0.9738

Epoch 2/20
624/624 [==============================] - 76s 122ms/step - loss: 0.1232 - accuracy: 0.9577 - val_loss: 0.1016 - val_accuracy: 0.9792

Epoch 3/20
624/624 [==============================] - 77s 124ms/step - loss: 0.0964 - accuracy: 0.9679 - val_loss: 0.0837 - val_accuracy: 0.9786

Epoch 4/20
624/624 [==============================] - 77s 123ms/step - loss: 0.0915 - accuracy: 0.9715 - val_loss: 0.0875 - val_accuracy: 0.9770

Epoch 5/20
624/624 [==============================] - 76s 122ms/step - loss: 0.0821 - accuracy: 0.9740 - val_loss: 0.0908 - val_accuracy: 0.9732


82/82 [==============================] - 2s 19ms/step - loss: 0.0815 - accuracy: 0.9800


 Test_Accuracy:- 0.9800000190734863


82/82 [==============================] - 2s 19ms/step

              precision    recall  f1-score   support


           0       0.99      0.97      0.98      1300

           1       0.97      0.99      0.98      1300


    accuracy                           0.98      2600

   macro avg       0.98      0.98      0.98      2600

weighted avg       0.98      0.98      0.98      2600


In [75]: #Importing libraries required to load the data



import zipfile

import os

from PIL import Image

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns



from sklearn.model_selection import train_test_split

from sklearn.preprocessing import MinMaxScaler


import tensorflow as tf

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Conv2D, MaxPool2D, BatchNormalization, Dropout, Flatten, LeakyReLU, GlobalAvgPool2D

from tensorflow.keras.utils import to_categorical

from tensorflow.keras import optimizers



#to ignore warnings

import warnings

warnings.filterwarnings('ignore')



# Remove the limit from the number of displayed columns and rows. It helps to see the entire dataframe while printing it

pd.set_option("display.max_columns", None)

pd.set_option("display.max_rows", 200)


In [76]: #Storing the path of the data file 

path = 'cell_images.zip'



#The data is provided as a zip file so we need to extract the files from the zip file

with zipfile.ZipFile(path, 'r') as zip_ref:

    zip_ref.extractall()


In [77]: #Storing the path of the extracted "train" folder 

train_dir = 'C:/Users/jxing/Desktop/MIT/cell_images/train'



#Size of image so that each image has the same size

SIZE = 64



#Empty list to store the training images after they are converted to NumPy arrays

train_images = []



#Empty list to store the training labels (0 - uninfected, 1 - parasitized)

train_labels = []


In [78]: #We will run the same code for "parasitized" as well as "uninfected" folders within the "train" folder

for folder_name in ['/parasitized/', '/uninfected/']:

    

    #Path of the folder

    images_path = os.listdir(train_dir + folder_name)



    for i, image_name in enumerate(images_path):

        try:

            #Opening each image using the path of that image

            image = Image.open(train_dir + folder_name + image_name)



            #Resizing each image to (64,64)

            image = image.resize((SIZE, SIZE))



            #Converting images to arrays and appending that array to the empty list defined above

            train_images.append(np.array(image))



            #Creating labels for parasitized and uninfected images

            if folder_name=='/parasitized/':

                train_labels.append(1)

            else:

                train_labels.append(0)

        except Exception:

            pass       



#Converting lists to arrays

train_images = np.array(train_images)

train_labels = np.array(train_labels)


In [79]: #Storing the path of the extracted "test" folder 

test_dir = 'C:/Users/jxing/Desktop/MIT/cell_images//test'



#Size of image so that each image has the same size (it must be same as the train image size)

SIZE = 64



#Empty list to store the testing images after they are converted to NumPy arrays

test_images = []



#Empty list to store the testing labels (0 - uninfected, 1 - parasitized)

test_labels = []


In [80]: #We will run the same code for "parasitized" as well as "uninfected" folders within the "test" folder

for folder_name in ['/parasitized/', '/uninfected/']:

    

    #Path of the folder

    images_path = os.listdir(test_dir + folder_name)



    for i, image_name in enumerate(images_path):

        try:

            #Opening each image using the path of that image

            image = Image.open(test_dir + folder_name + image_name)

            

            #Resizing each image to (64,64)

            image = image.resize((SIZE, SIZE))

            

            #Converting images to arrays and appending that array to the empty list defined above

            test_images.append(np.array(image))

            

            #Creating labels for parasitized and uninfected images

            if folder_name=='/parasitized/':

                test_labels.append(1)

            else:

                test_labels.append(0)

        except Exception:

            pass       



#Converting lists to arrays

test_images = np.array(test_images)

test_labels = np.array(test_labels)


In [81]: # shape of images

print(train_images.shape)

print(test_images.shape)


In [82]: # shape of labels 

print(train_labels.shape)

print(test_labels.shape)


In [83]: # try to use min and max function from numpy

print(np.min(train_images), np.max(train_images))

print(np.min(test_images), np.max(test_images))


In [84]: # try to use value_counts to count the values

print(pd.DataFrame(train_labels).value_counts())

print(pd.DataFrame(test_labels).value_counts())


In [85]: # try to normalize the train and test images by dividing it by 255 and convert them to float32 using astype function

train_images = (train_images/255).astype('float32')

test_images = (test_images/255).astype('float32')


In [86]: # This code will help you in visualizing both the parasitized and uninfected images

np.random.seed(42)

plt.figure(1 , figsize = (4 , 4))



for n in range(1, 5):

    plt.subplot(2, 2, n)

    index = int(np.random.randint(0, train_images.shape[0], 1))

    if train_labels[index] == 1: 

        plt.title('parasitized')

    else:

        plt.title('uninfected')

    plt.imshow(train_images[index])

    plt.axis('off')


In [87]: #Clearing backend

from tensorflow.keras import backend

from tensorflow.keras.utils import to_categorical

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D,MaxPooling2D,Dense,Flatten,Dropout  

from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint

from random import shuffle



backend.clear_session()

#Fixing the seed for random number generators so that we can ensure we receive the same output everytime

np.random.seed(42)

import random

random.seed(42)

tf.random.set_seed(42)


In [88]: # Encoding Train Labels

train_labels=to_categorical(train_labels,2)

# Similarly let us try to encode test labels

test_labels=to_categorical(test_labels,2)

In [94]: #creating sequential model

model1=Sequential()



model1.add(Conv2D(filters=32,kernel_size=2,padding="same",activation="relu",input_shape=(64,64,3)))

model1.add(MaxPooling2D(pool_size=2))

model1.add(Dropout(0.4))

model1.add(Conv2D(filters=32,kernel_size=2,padding="same",activation="relu"))

model1.add(MaxPooling2D(pool_size=2))

model1.add(Dropout(0.4))

model1.add(Conv2D(filters=32,kernel_size=2,padding="same",activation="relu"))

model1.add(MaxPooling2D(pool_size=2))

model1.add(Dropout(0.4))

model1.add(Conv2D(filters=32,kernel_size=2,padding="same",activation="relu"))

model1.add(MaxPooling2D(pool_size=2))

model1.add(Dropout(0.4))



model1.add(Flatten())



model1.add(Dense(512,activation="relu"))

model1.add(Dropout(0.4))

model1.add(Dense(512,activation="relu"))

model1.add(Dropout(0.4))

model1.add(Dense(2,activation="softmax"))

model1.summary()


In [95]: model1.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])


In [96]: callbacks = [EarlyStopping(monitor='val_loss', patience=2),

             ModelCheckpoint('.mdl_wts.hdf5', monitor='val_loss', save_best_only=True)]


In [97]: history1=model1.fit(train_images,train_labels,batch_size=32,callbacks=callbacks,validation_split=0.2,epochs=20,verbose=1)


In [98]: accuracy1 = model1.evaluate(test_images, test_labels, verbose=1)

print('\n', 'Test_Accuracy:-', accuracy1[1])


In [103… # function to plot train and validation accuracy 

def plot_accuracy(history):

    N = len(history.history["accuracy"])

    plt.figure(figsize=(7,7))

    plt.plot(np.arange(0, N), history.history["accuracy"], label="train_accuracy", ls='--')

    plt.plot(np.arange(0, N), history.history["val_accuracy"], label="val_accuracy", ls='--')

    plt.title("Accuracy vs Epoch")

    plt.xlabel("Epochs")

    plt.ylabel("Accuracy")

    plt.legend(loc="lower right")


In [104… # Plotting the Train and validation curves

plot_accuracy(history1)


In [106… from sklearn.metrics import classification_report

from sklearn.metrics import confusion_matrix



pred = model1.predict(test_images)

pred = np.argmax(pred,axis = 1) 

y_true = np.argmax(test_labels,axis = 1)



#Printing the classification report

print(classification_report(y_true,pred))



#Plotting the heatmap using confusion matrix

cm = confusion_matrix(y_true,pred)

plt.figure(figsize=(8,5))

sns.heatmap(cm, annot=True,  fmt='.0f', xticklabels=['Uninfected', 'Parasitized'], yticklabels=['Uninfected', 'Parasitized'])

plt.ylabel('Actual')

plt.xlabel('Predicted')

plt.show()


In [152… # Error samples 
index=0

index_errors= []

for label, predict in zip(y_true, pred):

    if label != predict & predict==1:

        index_errors.append(index)

    index +=1



plt.figure(figsize=(10,8))

for i,img_index in zip(range(1,5),random.sample(index_errors,k=16)):

    plt.subplot(1,4,i)

    plt.imshow(test_images[img_index])

    plt.title('Actual: '+str(y_true[img_index])+' Predict: '+str(pred[img_index]))

    plt.axis('off')

plt.show()


In [153… # Error samples 
index=0

index_errors= []

for label, predict in zip(y_true, pred):

    if label != predict & predict==0:

        index_errors.append(index)

    index +=1



plt.figure(figsize=(10,8))

for i,img_index in zip(range(1,5),random.sample(index_errors,k=16)):

    plt.subplot(1,4,i)

    plt.imshow(test_images[img_index])

    plt.title('Actual: '+str(y_true[img_index])+' Predict: '+str(pred[img_index]))

    plt.axis('off')

plt.show()



